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PARTIAL SEQUENCING OF BOTULINUM NEUROTOXIN E

Hanspeter Michel, Paul A. Martino, Nian-Zhou Zhu, Jeff Shabanowitz and Donaid F. Hunt
University of Virginia, Chemistry Department, Charlottesville, VA 22901

Neurotoxins of botulinum clostridium are scientifically interesting for two reasons. First,
they are extremely toxic. Second, they can be used as models for three important biological
phenomena, selective recognition by a target cell, transport through the plasma membrare
and toxic activity. All three activities are situated on one polypeptide of approx. 150 kDa.
Whereas the complete gene sequences of neurotoxins A and C1 were published very
recently orJy parts of the neurotoxin E sequence is known. By using mass spectrometry,
supported by automated Edman degradation we were able to deduce approx. 50 kDa of
well established sequence information. Additionally, we also found approx. 30 kDa of
preliminary sequence information. These sequences should facilitate to complete the
sequence of neurotoxin E. Furthermore it should be used for the identification of
posttranslational modifications which are of crucial importance for the biological activity
of the protein.
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1. INTRODUCTION

Botulinum neurotoxins, produced in Clostridium botulinum, can be classified into seven
types, AB,C1,D,E,F and G (1). Botulinum neurotoxins are synthesized as aprox. 150 kDa
single chain precursor which is not or only weakly toxic. These precursors are then
posttranslationally modified into the highly toxic form (2,3). Two types of posttranslational
modifications are described. 1) Proteolytic cleavage (nicking) at a special susceptible
position into a heavy (aprox. 100 kDa) and a light (aprox. 50 kDa) chain, which are hold
together by at least one disulfide bridge (2). 2) activation by proteases (4-7). Nicking alone
has not been found to be responsible for the activation of the protein (8). This is supported
by the fact that neurotoxins B and E are not nicked but are activated by proteases (4-7).
Whereas the site for the nicking is described to be at a well defined position, little is known
about the exact mechanism of the actual activation. Recently a trypsin like protease from
Clostridium botulinum type A has been purified and characterized (9). This protease cleaves
single chain type A botulinum neurotoxin into the two chain form. Although botulinum
neurotoxin E exerts its toxicity as intact single chain protein it can easily be nicked by
trypsin as well as Lys-C (10).

Botulinum neurotoxins are multifunctional proteins. Their action as highly toxic substances
can be described in three different steps. 1) Selective binding to receptors on the surface
of the nerve cell plasma membrane. 2) Transfer of the protein through the plasma
membrane into the cytoplasm. 3) Catalytic function in the cytoplasm, which produces nerve
cell dysfunction. In analogy to other structurally related toxins, different regions of the
protein can be attributed with the different functions. For a review see (11,12). Whereas
the light chain is believed to contain the catalytic function, the C-terminus of the heavy
chain seems to be responsible for selective binding and the N-terminus for internalization.

To fully understand all aspects of action of botulinum neurotoxins exact knowledge of the
primary sequence, posttranslational modifications as well as higher order structures is
essential. Until recently only partial sequence information of botulinum neurotoxins were
available (13-16). Recently the complete sequence of botulinum neurotoxin A (17) and
botulinum neurotoxin Cl (18) have been reported. Together with the complete sequence
of botulinum neurotoxin A was published a 273 amino acid residues long piece of the N-
terminus of botulinum neurotoxin E. These sequences were derived from the corresponding
gene sequence. In this report we present aprox. 50 kDa of the primary sequence of the
150 kDa of neurotoxin E.
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2. MATERIAL AND METHODS

Botulinum neurotoxin E and a chymotryptic digest were provided by Dr. James Schmidt.
All preparations were assayed for non toxicity previous to sending. Trypsin and Glu-C
protease were sequencing grade from Boehringer Mannheim. CNBr was from Aldrich. All
solvents for high pressure liquid chromatography were HPLC grade. All other chemicals and
solvents were of highest available purity.

Purification of botulinum neurotoxins is described elsewhere (19).

Digestion with trvpsin. Aprox. 1 nimol of pyridylethylated neurotoxin E was dissolved in 1
pl formic acid. Water was added to a final vo!ume of 100)1l and the ph adjusted to 8.3 by
adding solid Tris base. The digestion was done with 3 upg of trypsin (12h, 37 TC). The
mixture was acidified to ph 3 with acetic acid and the generated peptides separated by
reverse phase HPLC. Sample in 100 p1 was injected onto a narrow bore RP300 (2.1 mm
x 10 cm) and eluted with 0 % to 60 % of 0.1 % TFA in H20 and 0.085 % TFA in
Acetonitril respectively.

Cyanogen bromide cleavage. 2 nmoles of pyridylethylated neurotoxin E was dissolved in 100
,ul 70 % (v/v) formic acid. The cleavage reaction was done at 370 C for 24 hours with 1 mg
of cyanogen bromide. The mixture was then lyophilized to remove solvents and cyanogen
bromide. The sample was dissolved in 3 ,ul of formic acid and diluted to 100,ul with 0.1 .
of TFA prior to injection onto a narrow bore BU300 (2.1 x 50 mm)reverse phase column.
Peptides were eluted with 0 % to 60 % of 0.1 % TFA (v/v) in H20 2nd 0.085 c,¾ TFA
(v/v) in acetonitril respectively.

Digestion with Glu-C. Peptides were dissolved in 50 mM ammonium bicarbonate buffer to
a concentration of I - 2,ug/ul. 2 % (w/w) enzyme was added and the digestion done for
16 hours at 37 TC. Separation of peptides was done as described above.

Mass spectrometry. Mass spectra were recorded on either a TSQ-70 triple quadrupole
instrument (Finnigan-MAT, San Jose, CA) or a quadrupole Fourier transform instrument
(21,23). Operation of these instruments for oligopeptide sequence analysis has been
described previously (21-24). Sample ionization and volatilization by particle bombardment
on the TSQ-70 instrument were accomplished with a cesium ion gun (Antek, Palo Alto, CA)
operated at 6 keV. For ion detection, the conversion dynode of this instrument was
operated at 15 keV. Samples for analysis on either instrument were prepared by adding 0.5
to I u]l of 0.1 % trifluoroacetic acid solution containing 10-100 pmol of peptide(s) to 0 .5,,'l
of a monothioglycerol matrix on a gold-plated stainless-steel probe. Electrospray mass
spectra were recorded on the TSQ-70 instrument equivped with the newly developed
Finnigan electrospray source. The electrospray needle was operated with a voltage
differential of 3-5 kV and a sheath flow of 5 pl/min of a 3/1 mixture of methanol/0.5%ý
acetic acid. Collision activated dissociation experiments were conducted at energies of 20-
25 eV for doubly charged ions and 15-18 eF for triply charged ions. Argon at a pressure of
3.5 mtorr was employed as the collission gas. Micro-capillary HPI-C experiments were
conducted with fused silica columns having an inside diameter of 75 microns and a lenghth
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of 75 cm. The last 10 cm of the column was filled with C-18 packing material. Peptides
were eluted with a gradient of 0-80% acetic acid (0.5%)/acetonitrile over a 20 min period
at a flow of 1-2 )il/min.

Peptide methyl esters. 100-400 pmol of peptide(s) were dried and carboxyl groups esterified
with 2 M methanolic HCI. The methanolic HCI was freshly made by dropwise adding of 240
ul of acetyl chloride into 1.5 ml of methanol. After cooling (5-10min) 20 pl of methanolic
HC1 was added to the peptide(s) and the reaction left at room temperature for 2 hours.
After removal of the solvents, the peptides were assayed on mass spectrometer.

Automated Edman degradation. Automated Edman degradation was performed by standard
methods on a Model 473 Protein sequencer (Applied Biosystems, Foster City, CA). Analysis
of PTH amino acids was done on line with a type 140 A HPLC system. Data recording and
analysis was done on a McIntosh Ix computer (Apple Computer, Inc., Cupertino, CA) with
the Applied Biosystem software.
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3. RESULTS

Digestion of botulinum neurotoxin type E was donc with different proteases and with
cyanogen bromide. One of the problems to obtain complete digests of pyridylethylated
neurotoxin E is its relative insolubility in aqueous solvents. We did choose several ways to
circumvent this problem. These include the solubilization of the protein in the presence of
6 M guanidine/HCI, in the presence of SDS and CHAPS, or with concentrated formic acid.
As proteases are not normally active under these conditions the solvents had to be adjusted
to be compatible with the corresponding protease.

Trypsin digestion, So far the most successful and best characterized method is using formic
acid prior to the digestion. In figure 1 is shown the HPLC trace of a digest of
pyridylethylated botulinum neurotoxin E with trypsin. For this digest neurotoxin E was first
dissolved in a minimal volume of concentrated formic acid. Prior to adding the trypsin the
solution was diluted and the pH adjusted to 8.3 with Tris-base. liquid secondary ion mass
spectra were recorded on the TSQ-70 mass spectrometer for the fractions 16 to 47. Table
I lists the most prominent masses found in each individual fraction. Mass spectra of the
individual fractions are shown in appendix A. Every fraction contains between 2 to 5
peptides. Being mixtures of a :'mited number of peptides these fractions are ideal samples
to do the sequencing with the triple quadrupole mass spectrometer.

J 214
0.1

35

30

38 51
I 4747

27 ~ 242

10 30 o min.

Figure 1. High pressure liquid chromatogram of a tryptic digest of botulinurn neurotoxin E.
Separation on a reverse phase narrow bore column, RP300 (2.1 x 100 mm).
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Table 1: Mass values (M + H)* of peptides in HPLC fractions of a tryptic digest of
neurotoxin E. Masses were recorded by liquid secondary ion mass spectroscopy on the TSQ-
70.

fraction (M + H)+

16 621 896
17 779 801 898 1129
18 895' 1131' 1227' 1376'
19 509 607 886 954 1097
20 842 886
21 886 1388*
22 739 1133 1280
23 750 1086 1117 1134' 1262 1569' 2263
24 750 1134
25 750 916 1132 1380
26 545 608 837 911 1329
27 1046 1329 2139'
28 1046 1526 1917 1978
29 784 1292 1526
30 926 1138 1292 1736 1853'
31 1342' 1865' 2223
32 1112 1342 2223
33 996
34 1376' 1504' 1694"
35 9478 1152' 1779' 1876" 28028
36 727 853 1039 1901
37 1042 1223 1513 1555 2467
38 755 1436' 2409a 2470
39 1264' 1420' 2470'
40 1089 1266 1458
41 1365 1719 1820 2287
42 1715' 2308'
43 1157 1244
44 1157 1604 1969 2513
45 900' 2512'
46 2009 2835
47 1898a 2012'

"sequences of peptides determined (see table 2)
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Generally the mass of the peptide to be sequenced is selected in the first quadrupole. In
the second quadrupole this selected peptide is subjected to fragmentation by collision with
argon. Resulting masses of the fragments are analyzed in the third quadrupole. Normally
the recording of one collission activated mass spectrum is insufficient for the complete
determination of the sequence. Additional information has to be obtained. With the
exception of the differentiation of isoleucine and leucine, which do have the same molecular
masses this additional information can normally be obtained by subjecting the peptide(s)
to selective modification prior to another mass spectral analysis. Whereas esterification in
methanolic HCI results in the identification of carboxyl groups, acetylation is normally used
to identify free amino groups. We also used automated Edman degradation. Also the
combination of mass spectrometry with automated Edman degradation showed to be very
favourable under certain conditions. As an example the sequencing of peptides contained
in tryptic fraction 35 is described. Shown in figure 2 is the mass spectrum of fraction 35
which contains five peptides with the masses 947, 1152, 1779, 1875 and 2802. We concluded
to be able to obtain collision activated spectra by liquid secondary ion mass spectrometry
of the single charged ions of the four peptides 947, 1152, 1779, and 1875.

IN= ,4

__ __ __ __ __ __ __ __ __ __ _ lot 124 4lo.

pI.

26-

24 A 2o S0 I 2$ 1 244 t ! 1g

Figure 2. Mass spectrum recorded on HPLC fraction 35 of the tryptic digest of botulinum
neurotoxin E.
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The collision activated mass spectra of these peptides are shown in figure 3a - 3d. For the
peptide 2802 we decided to choosc electrospray ionization and recorded the spectrum of
the triple charged ion. The collision activated mass spectrum is shown in figure 4. Although
!quence information can be obtained from all these mass spectra, further information is
needed to obtain a complete sequence for all five peptides. We decided to subject the total
fraction to automated Edman degradation. The cycles of these degradation are shown in
figure 5. Note that no sequence information can be obtained from these cycles due to the
complexity of the fraction.
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Figure 3. CAD mass spectra of tryptic peptides of botulinum neurotoxin E recorded on the
(MN + H). ions at m/z 947 (a), 1152 (b), 1779 (c) and 1875 (d). Possible fragment masses are
indicated on the top. Underlined are fragments which are identified in the mass spectrumn.
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Figure 4. CAD mass spectrum of the tryptic peptide of botulinum neurotoxin E record.,d
on the (M+H)*** ions at m/z 934. Possible fragment masses are indicated on the top.
Underlined are fragments which are identified in t•'e mass spectrum.

From the collision activwted mass spectra we concluded that the peptides 947. 1779, 1873
and 2802 would contain lysine at the C-terminus, first in all four cases we see the
corresponcing fragment y-ion (mass = 147), secor.d we used trypsin for the digestion. For
peptide 1152 the identity of the C-terminus is not obvious. Lysine as well as argininc can
be excluded due to the lack of the corresponding fragment y-ions (mass = 147 or 175
respectively). However we normally observe some chymotryptic activity in the trrpsin,
especially after prolonged time of digestion, which would give at least some clues for the
identification of the C-terminus. From the Edman cycles we found lysine in the position 7.
15, 17 and 26. The assignment of residues 17 to 26 of peptide 2802 is straightforward hN
comparison of the collision activated mass spectrum (fig. 4) and the Edman cycles (fig. 5).
Note that serine in position 21 connot be seen in the Edman degradation, however it can
be identified as mass difference between Y6 and y, respectively (fig. 4). Position 17 in the
automated Edman degradation shows two amino acid residuLs, isolcucine and h'sine. Lysine
is the C-terminus of peptide 1875. Isoleucine is in peptide 2802 (mass difference y+o - y; =
113, fig. 4). Position 16 shows two residues zs we!l, asparagine and histidine. Asparipne i"
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in peptide 1875 (mass difference y2 - y, = 114, or b,, - b1s - 114, fig. 3d). Histidine is in
peptide 2802 (mass difference y,, " y1 c = 137, fig. 4). Note also that due to the presence
of histidine y,, can also be seen as doubly charged ion. Position 15 in the automated Edman
degradation contains three amino acid residues, phenylalanine, isoleucine and lysine. Lysine
is the C-terminus of peptide 1779. Isoleucine is in peptide 1875 (mass difference Y3 - Y2
113, or b,, - b1 , - 113, fig. 3d). Phenylalanine is in peptide 2802 (mass difference y12 " Y11
- 147, fig. 4). y,, as well can be seen as doubly charged ion, again due to the presence of
histidine in position 16 of this peptide. In the same way, step by step, the amino acid
residues are assigned to the coriesponding peptide. This step by step assignment can be
done by starting at either end the N-terminus or the C-terminus. Both ways should finally
end in identical sequence assignment.

Chymotrptic digest. As a second example we describe the sequencing of a peptide from
a chymotryptic digest. The chymotryptic digest of botulinum neurotoxin E was done by Dr.
James Schmidt and the fraction provided for analysis. Shown in figure 6 are the collision
activated mass specira of the peptide 133G and its methyl ester form, peptide 1372. To
interpret the spectra fragments containing the N-terminus can be compared. The inass
difference between (M+H)° and bl, is 131, this indicates the presence of either leucine or
isoleucine on the C-terminus. This is in agreement with the fact that chymotrypsin was used
for cleavage. The next fragment. blo is 113 mass units lower than b11, this indicates the
presence of another leucine or isoleucine. The mass difference between b, 0 and b9 is 87.
The third residue from the C-terminus is therefore serine. In a similar way residues are
identified step by step. The shift of 42 indicates the presence of three carboxyl groups, the
C-terminus and two aspartic or glutamic acids. The following sequence information can be
obtained from the analysis of the two spectra: XDGNXXDQ/KQ/KSXX, where X is either
leucine or isoleucine. Note also that a differentiation between lysine and glutamine is not
possible. Acetlation of amino groups and mass spectral analysis could give the additional
information needed. We decided however to subject the fraction to automated Edman
degradation, this mainly in also differentiate between leucine and isoleucine which are
rather abundant in this particular peptide. From these we found the sequence of the
chymotryptic peptide 1330 to be: IDGNLIDQKSIL..

g R •WIgo _ Z . _ 1 _ I II _ J-L _ _ I I 1 II I JIII I 1 ! I I I I I
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Qyanogen bromide cleavage and Glu-C subdigest. As a last example we present the analysis
of a fraction from a cyanogen bromide digestion. Figure 7 shows the HPLC chromatogram
of cyanogen bromide treated neurotoxin E. When we subjected the most prominent peak
7 (fig. 7) to automated Edman degradation we found two peptides in this fraction. We were
able to obtain information for 22 residues. The following residues eluted in the same
stochiometric amount. From this sequencing alone we were not able to deduce any
sequence information for the individual peptides.

Residue no.: 1 5 10 15 20

peptidel: YQALQNAVNAI KTI I ENVKTYL
peptide2: KLI NEVKI RKLREYFKAKYNS I

A 2 14

10 30 min.

Figure 7. High pressure liquid chromatogram of a cyanogen bromide cleavage of botulinum
neurotoxin E. Separation on a reverse phase narrow bore column, BU 300 (2.1 x 50 mam).

To obtain more information from this fraction and to assign the individual amino acid
residues from the Edman degradation we subjected this cyanogen bromide fraction to
digestion with the protease G.u-C. The I1PLC chromatogram of this digest is showýn in
figure 8.
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"The individual fractions from this Glu-C digest were then analyzed on the triple quadruple
mass spectrometer. CAD mass spectra of the fractions 5 (m/z = 617), 21 (m/z = 1848) and
26 (m/z = 2177) are shown in figure 8. The corresponding sequences are shown on top of
the figure with the corresponding fragment masses. All three sequences can be identified
as part of the two peptides as found in the automated Edman degradation (see above).
From the peptides 2177 and 1848 we can assign the residues to peptide 1. Only one peptide
617 can be assigned to be part of the second peptide in that cyanogen bromide 'raction. We
have not been able to identify any further peptide. However the partial sequence of this
second peptide in cyanogen bromide fraction 7 can be constructed unambigi:ously.

Ali 4 0. 1

26

21

10 30 min.

Figure 8. High pressure liquid chromatogram of a subdigest with Glu-C protease. c\'anoyen
bromide fraction 7 (fig. 7) was subjected to Glu-C (V8) digestion and then separated on a
narrow bore reverse phase column, RP 300 (2.1 x 50 mm).
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Figure 9. CAD mass spectra of Glu-C protease fragments of botulinum neurotoxin E
recorded on the (M+HVW ions at m/z = 617 (a), m/z = 1848 (b) and m/z = 2177 (c).
Fragments are indicated on top. Underlined are fragments which are seen in the mass
spectrum.

In a similar fashion we analyzed several other fractions. Table 2 shows a summary of well
established sequence information. As a ongoing project a number of fractions are not vet
sufficient characterized. More sequence information can be obtained by further detaiied
analysis of other fractions.
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Tabkle: Sequences of peptides of botulinum neurotoxin E.

MWa Fraction no.b Sequencer

895 Tr-18 SSSVNNMR
1227 Tr-18 QALQNQVNAIK
1376 Tr-18 IKPGGCQEFYK
1388 Tr-21 VQVSNPQLNPYK
1134 Tr-23 VSIAMNNIDR
1569 Tr-23 INSFNYNDPVDNR
2139 TY-27 YVDTSGYDSNIDINGDVYK
1853 Tr-30 NVIG1TPQDFHPPTSLK
1342 Tr-31 IGLALNIGNEAQK
1865 Tr-31 TILYIKPGGCQEFYK
1376 Tr-34 NNNGNNIGLLGFK
1504 Tr-34 LNLTIQNDAYIPK
1694 Tr-34 THLFPLYADTATTNK
947 Tr-35 YFNIFDK

1152 Tr-35 LSNLLND SIY
1779 Tr-35 EQMYQALQNQVNAIK
1876 Tr-35 LAFNYGNANGISDYINK
2802 Tr-35 ANPYLGNDNTPDNQFHIGDASAVEIK
1436 Tr-38 LYSFTEFDXATK
2409 Tr-38 VSLNHNEIXWJLQDNAGINQK
1264 Tr-39 WIFVTITNDR
1420 Tr-39 FLTESSISYLMK
2470 Tr-39 VPEGENNVNLTSSIDTALLEQPK
1715 Tr-42 INNNLSGGILLEELSK
2308 Tr-42 VIIMGAEPDLFETNSSNISLR
900 Tr-45 NFSISFW

21512 Tr-45 LSNLLNDSIYNISEGYNINNLK
1898 Tr-47 S.TLNLGNIHVSNN1NFK
2012 Tr-47 EYYLLNVLKPNDFINR

596 Ch-31/15 TIKSF
586 Ch-31/16 MPSNH
749 Ch-45/5 GAEPDLF

1598 Ch-45/6 NYNDPVNDRTILY
964 Ch-47/5 KAiINIEEF

1059 Ch-50/2 ENDLOVIL
1330 Ch-49/7 IDGNLIDQKSIL

CB-21 YQALQNQVNAIKThIENVKTYLLNYLLQH-GSILGESE
CB-21 KLINE VKIRKLREYDKAYYNSY
CB-24 .NIWIIPER
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2890 CB/V8-5 LSKANPYLGNDNTPDNQFHIGDASAVE
CB/V8-8 RNVIGTTPQDFHPPTSL.K.GDTSY

amolecular weight of the (M + H)÷ as determined with the TSQ-70 mass spectrometer.
bfor digestion we used trypsin (Tr), chyrnotrypsn (Ch), Staph. aureus V8, Glu-C (V8), and
cyanogen bromide (CB).
Csequences listed in one letter code. X - I or L and period were residue not known.

4. DISCUSSION

Only recently the complete sequences of botulinum neurotoxin A (17) and neurotoxin C1
(18) was presented. Together with the sequence of neurotoxin A was published a apart of
the sequence of botulinum neurotoxin E including the N-terminus. Further sequence
information of this neurotoxin E could also be expected soon. Homologie alignment of
botulinum neurotoxins A and C1 as well as of tetanus toxin is shown in figure 8. The
alignment was done with the program CLUSTAL in PCGene (IntelliGenetics Inc., Geneva,
Switzerland) which uses the method of Higgins and Sharp (25). In addition the comparison
between botulinum toxin A and tetanus toxin has already been described (17). We
compared our sequences of botulinum neurotoxin E (table 2) with these three proteins by
using the programs SCANSIM and QGSEARCH in PCGene. The region of the highest
homology is indicated in figure 10. For most of the peptides (table 2) we found sufficient
homology to determine the relative position of the peptide. As can be seen the approx. 40
% of the total possible sequence is distributed very well over the whole range of the
protein. This observation is insofar important as it would exclude major parts of the protein
from beeing digested and therefore beeing accessible to sequencing. As the tryptic digest
(figure 2) is not completely analyzed with regard to sequences, further work has to be done
to determine how much of the total sequence can be obtained by analysis of one single
digest.

As the number of published gene sequences is increasing the importance of sequence
analysis on the level of the protein oi the corresponding peptides shifts more towards
analysis of posttranslational modifications. Search for such modifications however requires
the knowledge of the complete sequence. Neurotoxin E is only partially sequenced to date.
Therefore further work is necessary to completely sequence this protein, this can be
achieved by sequencing the gene or by continuing the sequencing on the protein level. Once
for example the complete sequence is available, very detailed analysis of our data with
regard to posttranslational modifications is greatly facilitated. Posttranslational modifications
are extremely important for the activation of these group of toxins as already mentioned
in the introduction. Up to now very little is actually known about the exact mechanism of
activation which means to conversion of the inactive precursor protein to the actual toxic
component.

V
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Appendix~ B ¾

List of additional preliminary sequence information, obtained from various digests. X lie or Leu; Z
Gin or Lys; Tr= trypsin; Ch = chymotrypsin; An = protease Asp-N.

m/z protease sequence m/z protease sequence ii

407 Tr FXK 471 Tr SXPR
545 Tr VDAXVK 630 Tr ZXNZK
547 Tr TSNXX 622 Tr YXGXR
644 Tr GXXTXK 659 Tr XNVSVK
681 Tr NYGSXK 690 Tr TXXESK
701 Tr NZ(NX)GR 739 Tr SFNXMK
740 Tr SFNXMK 750 Tr FDNXXK
743 Tr (XN)XEVK 763 Tr SMXANAR
780 Tr (--)YXVK 817 Tr WEEXXK
849 Tr FXZXVTK 894 Tr XVGZPTNR
8S7 Tr STXXXANR 897 Tr XXQPXTGR
907 Tr XYSGXQVK 935 Tr (QX)SEVMTK
986 Tr (AR)VSVANXR 1041 Tr NXWXXPER

1134 Tr XKSSSVXNMR 1160 Tr (QA)VVTESXDR
1185 Tr VVDSDXSXXPK 1196 Tr DXDTXYETAR
1202 Tr YGXPVXADXNK 1271 Tr (DZ)XXXNHGFSK
1416 Tr (--TTX)SMVPZKR 1526 Tr ZNZVYXYVVASK
779 Tr XNFZEK 999 Tr XXXSYFN/DK

688 Ch SNXZNX 768 Ch F/MRHYM .'
801 Ch (DZ)AXEXX 812 Ch NHEXNW.
829 Ch XNEVZNX 896 Ch XXZPXTGR

1102 Ch DXZZXENEX 1282 Ch (PE)XVNZPVZAAX
962 Ch XZNVTZXF

732 Tr/An YGXPVXA 819 Tr/An DPXFXSK
945 Tr/An DTGVXSXXK 961 Tr/An HTHSFVYA
985 Tr/An DNNTAXXPK 1023 Tr/An DNVNXVPNK
1471 Tr/An DXZZXEXEXNZK 4


